
Parameter Estimation Techniques for a Class

of Nonlinear Hysteresis Models

Ralph C. Smith and Andrew G. Hatch
Center for Research in Scientific Computation

Department of Mathematics
North Carolina State University

Raleigh, NC 27695-8205
rsmith@eos.ncsu.edu, aghatch@eos.ncsu.edu

Abstract

This paper addresses the development of parameter estimation techniques for a class of models
used to characterize hysteresis and constitutive nonlinearities inherent to ferroelectric, ferromagnetic
and ferroelastic materials employed in a wide range of actuators and sensors. These models are
formulated as integral equations with known kernels and unknown densities to be identified through
least squares techniques. Due to the compactness of the integral operators, the resulting discretized
models inherit ill-posedness which must be accommodated through regularization. The accuracy of
regularized finite-dimensional models is illustrated through comparison with experimental data.
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1 Introduction

Hysteresis and constitutive nonlinearities are inherent properties of a wide range of piezoceramic
(PZT), magnetic, and shape memory alloy (SMA) compounds being considered as actuators and sen-
sors in aeronautic, aerospace, automotive, industrial and biomedical applications. In some regimes,
hysteresis can be mitigated through restricted input levels, amplifier designs, or feedback mech-
anisms. In general, however, these properties are ubiquitous and are often inexorably related to
material attributes which provide the materials with unique transducer capabilities. For example,
damping provided by a shape memory tendon is proportional to the area of the hysteresis loop.
Hence optimal tendon design to attenuate wind or earthquake-induced vibrations in civil structures
requires maximal hysteresis rather than operation in approximately linear regimes. This necessi-
tates the development of models, parameter estimation techniques, and model-based control designs
which incorporate the nonlinear hysteresis mechanisms in a manner which facilitates subsequent
implementation.

A number of modeling strategies have been proposed but three stand out in the sense that they
provide unified frameworks for characterizing hysteresis in ferroelectric, ferromagnetic and ferroelas-
tic materials, which are collectively referred to as ferroic compounds. These three approaches are
homogenized energy models [8, 10, 18–20, 24, 25], Preisach formulations [2, 3, 5, 7, 16, 26], and domain
wall models [6, 8, 14, 21,22].

As detailed in [17], the domain wall framework is efficient to implement but requires a priori
knowledge of turning points to guarantee closure of biased minor loops. This precludes its use in
certain feedback designs where turning points are determined by measured or estimated states of the
system. The classical Preisach framework requires the properties of congruency and deletion [11,12]
which are overly restrictive for a number of materials and applications. As detailed in [1], these
restrictions have been eliminated for magnetic material characterization through the development of
extended Preisach models; however, these extensions come at the price of increased complexity, and
the maturity of extended Preisach models for PZT and SMA lags far behind the magnetic theory.
The homogenized energy framework is the most recent of the three and is based on a combina-
tion of energy analysis at the lattice level and stochastic homogenization techniques to construct
macroscopic models. Due to its energy basis, it incorporates certain frequency, temperature, and
stress dependencies which makes it applicable for a wide range of transducer designs and operating
regimes. Furthermore, it is illustrated in [23] that this framework provides an energy basis for certain
extended Preisach formulations. Due to its flexibility and generality, we employ the homogenized
energy framework in this paper and construct parameter estimation techniques in this context.

In Section 2, we summarize the homogenized energy model for ferroelectric (e.g., PZT), ferro-
magnetic (e.g., iron, Terfenol-D), and ferroelastic (e.g., SMA) compounds to illustrate its structure
and generality. Specifically, it will be noted that the models are formulated as integral equations
with known kernels and unknown densities. The compactness of the integral operator is established
in Section 3 and, in Section 4, it is shown that this leads to ill-posedness in the inverse problem
associated with estimating the densities given a set of measured input-output data. Experimental
validation results are summarized in Section 5. To simplify the discussion, Sections 3 through 5 will
focus on the polarization model. Due to the general nature of the framework, however, the results
are equally applicable to the magnetic and shape memory alloy models.
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2 Free Energy Framework

We summarize in this section the free energy framework for characterizing hysteresis in ferroelectric,
ferromagnetic and ferroelastic materials. Details regarding the development and validation of these
models can be found in [10,19,20,25].

2.1 Polarization Model

2.1.1 Local Polarization Model

To quantify the internal and electrostatic energy at the lattice level, we employ the Helmholtz energy

ψ(P ) =


1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI .

(1)

and Gibbs energy
G(E, P ) = ψ(P )− EP (2)

where E and P are the electric field and polarization and PI and PR denote the inflection point and
polarization at which the minimum of ψ occurs.

In the absence of thermal activation, minimization of G for fixed field inputs yields the local
polarization relation

P (E) =
E

η
+ δPR (3)

where the parameter δ has a value of 1 for positively oriented dipoles and −1 for negative orientations.
To specify δ and hence P more specifically in terms of the initial dipole orientations and previous
switches, we employ Preisach notation and take

[P (E; Ec, ξ)](t) =


[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec.

(4)

Here

[P (E; Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

denotes the initial dipole distribution and transition times are designated by

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec}

where Tf denotes the final time under consideration. The local coercive field

Ec = η(PR − PI) (5)

quantifies the field at which the negative well ceases to exist and hence a dipole switch occurs. As
shown in Figure 1, the kernel (3) or (4) quantifies the abrupt hysteresis transitions associated with
homogeneous, single crystal compounds in the absence of thermal activation.
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Figure 1: Local polarization P given by equation (6) with high thermal activation (– – –) and limiting
polarization P specified by (4) in the absence of thermal activation (——).

To incorporate thermal activation, the Gibbs energy G and relative thermal energy kT/V are
balanced through the Boltzmann relation

µ(G) = Ce−GV/kT .

Here k is Boltzmann’s constant, V is a reference volume, T is the temperature in degrees Kelvin,
and C is a constant chosen to ensure that integration over all admissible inputs yields a probability
µ of unity. As detailed in [25], the kernel in this case is

P = x+ 〈P+〉+ x− 〈P−〉 (6)

where x+ and x− denote the fractions of dipoles having positive and negative orientations and 〈P+〉
and 〈P−〉 denote the average expected polarizations associated with the two orientations. Since the
expected polarization values are obtained by integrating the product Pµ(G(P )) over all admissible
configurations, it follows that

〈P+〉 =

∫ ∞

PI

Pe−G(E,P,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, 〈P−〉 =

∫ −PI

−∞
Pe−G(E,P )V/kT dP∫ −PI

−∞
e−G(E,P )V/kT dP

.

The denominator results from the evaluation of the integration constant C whereas it is illustrated
in [25] that the use of the inflection points ±PI , to simplify evaluation of the integrals, can be justified
though either asymptotic analysis or energy arguments.

Debye arguments yield the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

quantifying the evolution of the respective dipole fractions. For implementation, these relations can
be simplified to the single differential equation

ẋ+ = −p+−x+ + p−+(1− x+)

through the identity x+ + x− = 1.
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The likelihoods of switching from positive to negative orientations, or vice versa, are respectively
quantified by

p+− =
1

T (T )

∫ PI+ε

PI

e−G(E,PI ,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, p−+ =
1

T (T )

∫ −PI

−PI−ε
e−G(E,−PI ,T )V/kT dP∫ −PI

−∞
e−G(E,P,T )V/kT dP

where ε is taken to be a small positive constant. The relaxation term T quantifies the frequency
at which jumps are attempted whereas the remainder of the definition characterizes the probability
of achieving the energy required to exit respective potential wells. It is detailed in [25] that this
probability increases when the relative thermal energy kT/V approaches the Gibbs energy G.

Remark 1. It is proven in [17, 25] that the kernel P given by (6) converges to the piecewise linear
kernel (3) or (4) in the limit kT/V → 0 of negligible thermal activation. It also follows immediately
that P given by (6) satisfies

P ≤ P+
min =

E

η
+ PR , positively oriented dipoles

P ≥ P−
min =

E

η
− PR , negatively oriented dipoles

as depicted in Figure 1. For all fields E ∈ C[a, b] with a, b finite, it thus follows that P ∈ L1(a, b)
and P ∈ L2(a, b) for P given by (3), (4) or (6).

2.1.2 Macroscopic Polarization Model

To incorporate the effects of material nonhomogeneities, polycrystallinity, and variable effective fields
Ee = E +EI , where EI denotes interaction fields, we assume that EI and the local coercive field Ec,
defined in (5), are manifestations of underlying distributions rather than constants. This yields the
macroscopic model

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ; Ec, ξ)](t) dEI dEc

=
∫ ∞

0

∫ ∞

−∞
ν(Ec, EI)[P (E + EI ; Ec, ξ)](t) dEI dEc

(7)

where ν1 and ν2 are densities associated with Ec and EI .
To accommodate physical criteria, we assume that ν1 ≥ 0 and ν2 ≥ 0 satisfy the conditions

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x,

|ν2(x)| ≤ c2e
−a2|x|

(8)

for positive c1, a1, c2, a2. The restricted domain in (i) reflects the fact that the coercive field Ec is
positive whereas the symmetry enforced in the interaction field through (ii) yields the symmetry
observed in low-field Rayleigh loops. Hypothesis (iii) incorporates the physical observation that the
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coercive and interaction fields decay as a function of distance and guarantees that integration against
the piecewise linear kernel yields finite polarization values.

Remark 2. It is illustrated in [17,20] that for certain operating regimes, reasonable accuracy can be
obtained using a priori choices for ν1 and ν2. Motivated by densities employed in Preisach models
for magnetic compounds, one such choice is

ν1(Ec) = c1e
−[ln(Ec/Ec)/2c]2

ν2(EI) = c2e
−E2

I /2b2 .
(9)

For general operating regimes, however, identification of general densities ν1 and ν2 is necessary to
achieve accurate material characterization throughout both biased and unbiased operating regimes.

Remark 3. Formulation of the model in terms of the joint density ν(Ec, EI) = ν1(Ec)ν2(EI)
increases the dimensionality of the parameter estimation problem but yields models that exhibit a
linear dependence on parameters. This proves advantageous when constructing linear adaptive control
techniques and for this reason, we focus heavily on this case in subsequent analysis.

2.1.3 Discretized Polarization Model

For implementation purposes, Gaussian or Newton–Cotes quadrature routines can be employed to
approximate the integrals, thus yielding the system

[P (E)](t) =
Ni∑
i=1

Nj∑
j=1

ν1(Eci)ν2(, EIj )[P (EIj + E; Eci , ξ)](t)viwj (10)

where vi and wj are the weights associated with the quadrature rules and Eci , EIj are the abscissas.
Highly efficient algorithms for implementing the approximate model (10) with general densities ν1

and ν2 are provided in [17,25].
Formulation of the model in terms of the joint density ν = ν1 · ν2 increases the dimensionality of

the parameter estimation problem from Ni +Nj to Ni ·Nj but yields a system which depends linearly
on the parameters {ν(Eci , EIj )}. This permits implementation of linear least squares algorithms and
linear adaptive identification and control techniques.

To formulate the discretized model (10) as a linear system in terms of ν = ν1 · ν2, we define the
Ni ×Nj matrices A(E) and Φ to have components

[A(E)]ij =
[
E + EIj

η
+ PRδ(E; Eci , EIj )

]
viwj

[Q]ij = ν(Eci , EIj ).

For N = Ni ·Nj , we define the N × 1 vector q and 1×N vector a(E) by

q = vec(Q) , a(E) = [vec(A(E))]T

where ‘vec’ denotes the vector concatenation of the respective matrices. The discretized polarization
model (10) can then be formulated as the linear system

P (E) = a(E)q. (11)

We note that η is considered known and fixed in this formulation and is incorporated in a(E).
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2.2 Magnetization Model

The magnetization model is analogous so we simply summarize it here. Details regarding its devel-
opment can be found in [18,19].

The hysteretic relation between the magnetic field H and magnetization M in ferromagnetic
materials is characterized by the model

[M(H)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Hc)ν2(HI)[M(H + HI ; Hc, ξ)](t) dHI dHc. (12)

In the absence of relaxation processes, the kernel M has the form

M =
H

η
+ δMR

whereas it is given by
M = x+ 〈M+〉+ x− 〈M−〉

when the Gibbs and relative thermal energies are balanced to incorporate thermal relaxation pro-
cesses. The dipole fractions x+, x−, average magnetizations 〈M+〉 , 〈M−〉, local remanence magne-
tization MR, and switching parameter δ are defined in a manner analogous to their polarization
counterparts as detailed in Section 2.1. As with the polarization model, the goal in the parameter
identification problem is to estimate ν given data measurements {Ĥk, M̂k}, k = 1, . . . , Nd.

2.3 Shape Memory Alloy Model

The relation between input stresses σ and strains ε generated in shape memory alloy compounds as
they undergo martensitic phase transformations is quantified by the integral relation

[ε(σ, T )](t) =
∫ ∞

0

∫ ∞

−∞
ν1(σR)ν2(σI)[ε(σ + σI , T ; σR, ξ)](t) dσI dσR (13)

which has the same general form as the polarization model (7) and magnetization model (12). For
regimes in which thermal activation or relaxation mechanisms are significant, the kernel ε is given
by

ε = x− 〈ε−〉+ x+ 〈ε+〉+ xA 〈εA〉

where x−, x+ and xA respectively denote the volume fraction of martensite minus, martensite plus,
and austenite layers in 1-D SMA compounds and 〈ε−〉 , 〈ε+〉 and 〈εA〉 are the average strains asso-
ciated with layers. Details regarding the construction of thermally active and inactive SMA models
can be found in [9, 10,15,17].

3 Compactness of the Polarization Operator

The behavior of the inverse problems associated with estimating the densities ν1 and ν2, or the joint
density ν = ν1 · ν2, is intimately related to properties of the integral operators resulting from the
models (7), (12) and (13). In this section, we establish that the operators are compact; in Section 4,
we use this fact to establish the ill-posedness of the inverse problem associated with parameter
estimation. To simplify the discussion, we focus solely on the polarization model in subsequent
sections. Due to the unified nature of the characterization framework, however, the results also
apply to the magnetization and SMA models.
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We focus on the case ν = ν1 · ν2, which yields a linearly parameterized problem but comes
at the cost of increased dimensionality. The kernel P in (7) can be taken as either the piecewise
linear relation (3) or (4), that arises when thermal activation is negligible, or the kernel (6) which
incorporates thermal processes. The important observation in both cases is the property that for
finite input fields E ∈ C[a, b], the kernel satisfies P ∈ L1(a, b) and P ∈ L2(a, b) as noted in Remark 1.

It was noted in Section 1 that the homogenized energy framework provides an energy basis for
certain extended Preisach models and hence one would expect similar compactness results for the
two theories. The reader is referred to Iyer and Shirley [7] for theory establishing the compactness
of the classical Preisach operator.

By invoking the physical decay criteria (8), the polarization model (7) can be approximated to
arbitrary accuracy by the relation

[P (E)](t) =
∫∫
Ω2

ν(Ec, EI)[P (E + EI ; Ec, ξ)](t) dEI dEc (14)

on the compact domain
Ω2 = {(Ec, EI) ∈ R+ × R | ν(Ec, EI) ≥ ε}.

Furthermore, we let the minimum and maximum admissible input fields be denoted Emin and
Emax and define

Ω1 = [Emin, Emax].

We consider parameters q = ν in the parameter space

Q = L2(Ω2) (15)

and define the observation operator CP = P (E) on the observation space

Y = L2(Pmin, Pmax). (16)

The polarization model (7) can then be formulated as

y(E) = Kq(E)

where
E ∈ C[Ω1] ⊂ L2(Ω1)

and the parameter-to-observation operator K is defined by

Kq = C
∫∫
Ω2

k(·+ EI , Ec)q(Ec, EI) dEI dEc. (17)

From the property that P given by (4) or (6) satisfies P ∈ L1(Ω1), P ∈ L2(Ω1), as noted in
Remark 1, it follows that k ∈ L1(Ω) and k ∈ L2(Ω) where

Ω = Ω1 × Ω2.

The property that k ∈ L1(Ω) is typical for convolution operators whereas k ∈ L2(Ω) facilitates
construction of a generalized Fourier basis for the operator. We employ this latter property to
establish that K is compact for the given choice of spaces. As a prelude, we state the following
theorem which is Theorem 5.24.8 from [13].
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Theorem 1. Let X and Y be Banach spaces and let KN : X → Y, N = 1, 2, . . . , be a sequence of
compact linear operators converging to a bounded linear operator K : X → Y ; that is, ‖KN −K‖ → 0
as N →∞. Then K is a compact linear operator.

Remark 4. Consider the parameter space Q and observation space Y defined in (15) and (16). The
integral operator given by (17) is then a compact operator. We establish this by demonstrating that
K is the limit of a sequence of finite rank operators followed by the use of Theorem 1.

We first construct an orthonormal basis {φi} for L2(Ω). It is illustrated in [13] that

ϕ`(s) =
1√

Emax − Emin
exp

[
2πi` · s− Emin

`− Emin

]
, ` = 0,±1,±2, · · ·

forms an orthonormal basis for L2(Ω1). With an analogous basis definition for L2(Ω2), it follows
that an orthonormal basis for L2(Ω) is

φ`m(s, t, v) = ϕ`(s)ϕm(t, v)

which we re-index as {φi}.
It follows that every f ∈ L2(Ω) has the generalized Fourier series representation

f =
∑

i

〈f, φi〉φi

where 〈·, ·〉 denotes the usual L2 inner product. The norm representation

‖f‖2 =
∑

i

| 〈f, φi〉 |2

follows from Plancheral’s theorem. Moreover, we can represent K and approximating finite-rank
operators KN by

Kf =
∑

i

〈f, φi〉ψi

KNf =
N∑

i=1

〈f, φi〉ψi

where ψi ≡ Kφi.
To establish the convergence K → KN , we note that

‖Kf −KNf‖ =
∥∥∥∥ ∑

i≥N+1

〈f, φi〉ψi

∥∥∥∥
≤

∑
i≥N+1

| 〈f, φi〉 | ‖ψi‖

≤
[ ∑

i≥N+1

| 〈f, φi〉 |2
]1/2[ ∑

i≥N+1

‖ψi‖2

]1/2

≤ ‖f‖
[ ∑

i≥N+1

‖ψi‖2

]1/2
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where the third inequality follows from the Schwartz inequality. Furthermore, we observe that∑
i

‖ψi‖2 =
∑

i

[ ∫
Ω1

|Kφi(E)|2 dE

]

=
∑

i

∫
Ω1

∣∣∣∣ ∫∫
Ω2

k(E + EI , Ec)φi(Ec, EI) dEI dEc

∣∣∣∣2 dE

=
∫

Ω1

[ ∑
i

∣∣∣∣ ∫∫
Ω2

k(E + EI , Ec)φi(Ec, EI) dEI dEc

∣∣∣∣2 ]
dE

=
∫

Ω1

[ ∫∫
Ω2

|k(E + EI , Ec)|2 dEI dEc

]
dE < ∞.

The last step follows from Plancheral’s theorem. Convergence of the series
∑

i ‖ψi‖2 implies that∑
i≥N+1 ‖ψi‖2 → 0 as N →∞. Thus for ε > 0, there exists Nε such that for N > Nε,

‖K − KN‖ = sup
f 6=0

‖Kf −KNf‖
‖f‖ < ε

which establishes that
lim

N→∞
‖K − KN‖ = 0.

Since the range of KN is finite, it follows that KN is a compact operator. The compactness of K
follows from Theorem 1 since it is the norm limit of a sequence of compact operators.

4 Parameter Identification Problem

We focus on the problem of identifying the joint density ν in the polarization model (7) or density
values {ν(Eci , EIj )} in the discretized problem (10) due to the fact that these formulations yield the
linear parameterization necessary for linear adaptive identification or control techniques. The formu-
lation of parameter estimation problems associated with the identification of independent densities ν1

and ν2 or parameters arising in functional representations for ν1 and ν2 — e.g., C = c1 · c2, Ec, c, b in
(9) — is analogous but requires nonlinear parameterizations in the operator and matrix formulations.

For the operator K defined in (17), data P̂ corresponding to input fields Ê ∈ L2(Emin, Emax),
and parameter space Q = L2(Ω2), the parameter estimation problem can be formulated as follows:
find q ∈ Q so that

Kq = P̂ . (18)

We note that (18) has a classical solution if and only if P̂ ∈ R(K), where R(K) denotes the range
of K, which, in general, will not be true. Instead it is more reasonable to consider the least squares
problem

min
q∈Q

T (q) , T (q) =
1
2
‖Kq − P̂‖2

Y . (19)

However, because K is compact with infinite dimensional range, the Moore-Penrose inverse K† is
discontinuous so that even (19) is ill-posed — see [4]. This motivates consideration of the augmented
functional

Tα(q) =
1
2
‖Kq − P̂‖2

Y + αJ (q) (20)

9



and the regularized least squares minimization problem

min
q∈Q

Tα(q). (21)

The regularization parameter α > 0 controls the tradeoff between goodness of fit to the data and
stability whereas the penalty functional J provides stability and allows the inclusion of a priori
information regarding the parameter q. One choice for J is the Tikhonov functional which we
illustrate in the context of the discretized problem.

To formulate the finite-dimensional parameter estimation problem, we modify the linearly pa-
rameterized system (11) to reflect measured data. We define the Ni ×Nj matrices

[Ak]ij =

[
Êk + EIj

η
+ PRδ(Êk; Eci , EIj )

]
viwj

[Q]ij = ν(Eci , EIj )

and vector concatenations
q = vec(Q) , ak = [vec(Ak)]T

so that q and ak are respectively 1 × N and N × 1 where N = Ni · Nj . Additionally, the Nd × 1
vectors P and P̂ are defined componentwise by

[P]k = P (Êk; q) , [P̂]k = P̂k (22)

and the Nd ×N matrix A is defined row-wise by

[A]k = ak.

The discretized polarization model (7) can then be formulated as the linearly parameterized system

P(Êk) = Aq

— see [17,25] for highly efficient implementation algorithms.
The unregularized least squares problem used to estimate q = ν ∈ Q = R

Ni·Nj given measure-
ments {(Êk, P̂k)}, k = 1, . . . , Nd is the following:

min
q∈Q

T (q) , T (q) =
1
2
‖Aq − P̂‖2

subject to qi ≥ 0, j = 1, . . . , N.

(23)

Here ‖ · ‖ denotes the Euclidean norm in R
N . To incorporate Tikhonov regularization, we consider

the minimization problem

min
q∈Q

Tα(q) , T (q) =
1
2
‖Aq − P̂k‖2 +

α

2
‖q‖2

subject to qi ≥ 0, j = 1, . . . , N.

(24)

Techniques for choosing α to avoid oversmoothing solutions as well as a solution algorithm for (24)
can be found in Vogel [27].

We do not consider the convergence of approximate parameters as discretization levels are in-
creased but instead let the infinite-dimensional analysis motivate potential sources of ill-posedness in
the discrete least squares formulations. The effects of ill-posedness are demonstrated in the context
of material characterization using experimental data.
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5 Material Characterization

To illustrate attributes of the least squares parameter estimation formulations (23) and (24) for
estimating the N = Ni ·Nj parameters {ν(Eci , EIj )}, we consider the characterization of the ferro-
electric compound PZT5H using experimental data which includes both an unbiased major loop and
multiple biased minor loops. Because data was collected at 0.2 Hz, relaxation effects were negligible
so we employed the piecewise linear kernel (3) or (4) in the discretized model (10).

The unregularized model fits obtained with the discretization limits Ni = Nj = 24 (N = 576)
and Ni = Nj = 48 (N = 2304) using data from all seven hysteresis loops are plotted in Figure 2
whereas those obtained using the same quadrature limits in the regularized functional are given in
Figure 3. Without regularization, the ill-posedness associated with inversion of the discretized com-
pact operator yields increasingly inaccurate model predictions as quadrature limits are increased.
Regularization through the inclusion of the penalty term α

2 ‖q‖2 stabilizes the pseudoinverse by shift-
ing singular values away from the origin thus yielding the highly accurate fit observed in Figure 3.
The regularization parameter α = 5 × 1020 used to obtain the modeled behavior in Figure 3 was
computed using a variation of the unbiased predictive risk estimator (UPRE) method discussed in
Vogel [27]. Smaller and larger values of α yielded larger residuals and increasingly inaccurate modeled
behavior — e.g., the fit in Figure 2 corresponds to α = 0.

Additional examples illustrating the performance of the model with a priori functional choices
for ν1 and ν2 can be found in [20] where it is demonstrated that general densities are required to
obtain accurate characterization through the full hierarchy of drive conditions.

6 Concluding Remarks

This paper addresses theoretical and implementation issues associated with the construction of mod-
els used to characterize hysteresis and constitutive nonlinearities inherent to ferroelectric, ferromag-
netic and ferroelastic materials. This unified characterization framework employs energy analysis
to construct polarization, magnetization and strain kernels at the lattice level. To incorporate the
effects of material nonhomogeneities, polycrystallinity, and variable effective fields, certain parame-
ters are assumed to be manifestations of underlying distributions rather than constants. Stochastic
homogenization in this manner yields integral formulations having known kernels and unknown den-
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Figure 2: PZT5H data and model fit with general product density ν estimated using the unregularized
functional (23) with data from all 7 loops. (a) Ni = Nj = 24 (N = 576), and (b) Ni = Nj = 48
(N = 2304).
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Figure 3: PZT5H data and model fit with general product density ν estimated using the regularized
Tikhonov functional (24) with data from all 7 loops. (a) Ni = Nj = 24 (N = 576), and (b)
Ni = Nj = 48 (N = 2304).

sities which must be estimated for a given material of transducer configuration. Estimation of either
these general densities, or parameters in assumed functional forms for the densities, comprises the
parameter estimation problem under consideration in this paper.

It is noted that in this homogenized energy framework, one has the option of estimating general
constituent densities ν1 and ν2, the joint density ν = ν1 · ν2, or functional forms of ν1 and ν2

having a small number of parameters. It is illustrated in [20] that the third option leads to a small
number of parameter to be identified (e.g., 5 to 6) but yields models having limited accuracy for
general operating regimes. Consideration of the joint density ν increases the dimensionality of the
parameter estimation problem but yields a linear parameterization as required for linear adaptive
identification and control techniques. For this reason, we focused on this formulation throughout the
development.

It is demonstrated that the integral operators associated with the model are compact and hence
the inverse problem is ill-posed. This motivates consideration of Tikhonov regularization to stabilize
the pseudoinverse by shifting singular values away from the origin. It is shown in the context of
characterizing PZT5H material behavior that increasingly inaccurate model fits are obtained as
discretization levels are increased in the absence of regularization whereas the deleterious effects of
ill-posedness are avoided when suitable regularization is incorporated.

From a practical perspective, the decrease in regularity and accuracy due to ill-posedness can be
mitigated by employing small to moderate discretization limits — this forms the basis of regulariza-
tion by coarsening. Whereas convergence issues are not addressed by this latter approach, it yields
models which can facilitate control design.
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